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ABSTRACT: The unsteady, compressible, thin-layer Navier-Stokes equations are used to obtain

three-dimensional, asymmetric, vortex-flow solutions around cones and cone-cylinder configura-

tions. The equations are solved using an implicit, upwind, flux-difference splitting, finite-volume

scheme. The computational applications cover asymmetric flows around a 5*semi-apex angle cone

of unit length at various Reynolds number. Next, a cylindrical afterbody of various length is added

to the conical forebody to study the effect of the length of cylindrical afterbody on the flow asymme-

try. All the asymmetric flow solutions are obtained by using a short-duration side-slip disturbance.

1. INTRODUCTION

The problem of asymmetric vortex-flow around slender bodies has received considerable

attention by researchers in the computational fluid dynamics area [1-3] and by researchers in the

experimental fluid dynamics area [4-6]. The problem is of vital importance to the dynamic stability

and controllability of missiles and fighter aircraft. When flow asymmetry develops, it produces

side forces, asymmetric lifting forces and corresponding yawing, rolling and pitching moments that

might be larger than those available by the control system of the vehicle.

In several recent papers by the present authors [1, 2], the unsteady, thin-layer, compressible

Navier-Stokes equations have been used to simulate steady and unsteady, asymmetric vortex flows,

including their passive control, around cones with different cross-sectional shapes. The emphasis of

these papers was extensive computational studies of the parameters which influence the asymmetric

flow phenomenon and its passive control. Since the computational cost associated with the solution

of three-dimensional-flow problems with reasonable flow resolution is very expensive, all the

computational solutions were obtained using a locally-conical flow assumption. Such an assumption

reduces the problem solution to that on two conical planes, which are in close proximity of each

other, and hence it reduces the computational cost by an order of magnitude. Moreover, such

solutions still provide extensive understanding of the flow physics since one can use very fine grids

for reasonable flow resolution. In the present paper, we focus on the three-dimensional asymmetric

flow problem using a very fine grid with high resolution near the solid boundary.

2. FORMULATION AND COMPUTATIONAL SCHEME HIGHLIGHTS

The conservative form of the dimensionless, unsteady, compressible, thin-layer Navier-Stokes

equations in terms of time-independent, body-conformed coordinates are used. The implicit, upwind,

flux-difference splitting finite-volume scheme is used to solve the unsteady, compressible, thin-layer

Navier-Stokes equations. The scheme uses the flux-difference splitting scheme of Roe which is

based on the solution of the approximate Riemann problem. Boundary conditions are explicitly

implemented. At the plane of geometric symmetry, periodic conditions are used. Freestream
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Figure 1. Asymmetric flow solution around a cone of unit length, short-duration side slip.

Figure 2. Asymmetric flow solution around a cone of unit length, short-duration side slip.
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Figure 3. Unsteady asymmetric locally-conical flow solution at different time steps within one
cycle (cylinder axis is a time axis), At = lO-3.

conditions are specified at the inflow boundaries and first-order extrapolation of the flow variables

is used at the outflow boundaries. The conical shock enclosing the body is captured as part of the

solution. On the solid boundary, the no-slip and no-penetration conditions are enforced and the

normal pressure gradient is set equal to zero. For the temperature, the adiabatic boundary condition

is enforced at the solid boundary. The initial conditions correspond to the freestream conditions

with the no-slip and no-penetration conditions on the solid boundary.

3. COMPUTATIONAL APPLICATIONS AND DISCUSSIONS

Circular Cone

A 5°-semi-apex angle circular cone of unit length (cone length is the characteristic length)

is considered. This is the same circular cone which was considered by the authors in Ref. 1 for

the locally-conical flow solutions. A three-dimensional grid of 161 ×81 x65 in the wrap around,

normal and axial directions, respectively, is generated by using a modified Joukowski wansformation

at axial stations. The grid is clustered algebraically in the normal direction of the body using a

geometric series with minimum grid spacing of 10-6 at the cone vertex and 10-s at the axial station

of unit length. The cross-flow grid size of 161x81 is the same grid size which was used for the

locally-conical flow solutions of Ref. 1.

With the flow conditions set at a = 20 °, Moo = 1.8 and Re = l0 s, which are the same conditions

as those of the locally-conical flow of Ref. 1, the three-dimensional solution produces a symmetric

steady flow, unlike the locally-conical solution which produces asymmetric steady flow. Next, the

search is directed at obtaining asymmetric flow solutions for the three-dimensional cone flow. In

Fig. 1, we show the solution in the form of total-pressure loss for the same cone at a = 40 °, Moo

= 1.4 and Re =4x 106. It is seen that the solution is asymmetric and is nearly self-similar over

a long axial distance of the cone length. This solution is obtained using a short-duration side-slip
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Figure 4. Total-pressure-loss contours and surface-prcssurc coefficient at different axial stations,

a cone of unit length, a = 40 °, Moo = 1.4, Re = 8x106-

Figure 5. Asymmetric flow solution around a cone-cylinder configuration 1:1.
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Figure 6. Surface pressure, total-pressure-loss and Mach contours at different axial stations,

cone-cylinder configuration 0.5:0.5, a = 46.1 °, Moo = 1.6, Re = 6.6x 106, comparison

with experimental data (Ref.5).

disturbance.When the residualerrordrops fourordersof magnitude,a 2°-side-slipdisturbanceis

appliedfor100 iterationsteps,thenitisremoved. Thereafter,thepseudo timestepping-iscontinued

untiltheresidualerrordropsagainfcurtofiveordersofmagnitudeand a stableasymmetricsolution

isobtained.

Figure2 shows thetotal-pressure-losssolutionforthesame cone forahigherReynolds number,

Re --8x 106. The asymmetry of the vortexflow becomes much strongeras compared with the

previouscase. The flow asymmetry of thiscase changes sidesalong the axialdistanceand a

completewave lengthof flow asymmetry isformed between thethirdand ninthcross-flowplanes.

Strongspatiallyshed vorticesexistin the flowficld.This solutionis qualitativelysimilarto the

unsteadyasymmetriclocally-conicalflow solutionatdifferenttime steps[I]which isdepictedin

Fig.3 on a cylinderwith the axisof the cylinderrepresentingtime. The behaviorof the flow

asymmetry overone periodin Fig.3 isqualitativelysimilartothe behaviorof theflowasymmetry

overone wave lengthinFig.2. Figu_ 4 shows thetotal-pressure-losscontoursand surface-pressure

coefficientatdifferentaxialstationsforthecaseof Fig.2.The solutionsataxialstationsof X/L =

0.2and 0.9arcalmostthesame (thetotalpressurelossesaredrawn toa scalegivenby theratioof

the circular diameters at X/L = 1 station and the local axial station). The flow asymmetry between

these two stations represents a full wave length.
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Circular Cone-Cylinder Configurations

To address the issue of the effect of cylindrical afterbody length on the flow asymmetry a

cylindrical afterbody of different lengths is added to the unit-length conical forebody, The flow

around the resulting cone-cylinder configurations is solved with the flow conditions of a = 40 °, Moo

= 1.4and Re = 4x 106,which arethesame flowconditionsoftheisolatedunit-lengthcone ofFig.I.

The lengthsof thecylindricalafterbodyarechosen as 1,1.5and 2. The sourceof flowdisturbance

isthesame short-duration2°-side-slipdisturbance.For thecone-cylinderconfigurationof l:I(cone

length:cylinderlength),Fig.5 shows a very strongasymmeuic flow on thecone,in comparison

withtheflowasymmetry of theisolatedcone of Fig.I,and on thecylindricalafterbodyas well.It

shouldbc notedthatinsidethcconicalshock surroundingthecone-cylinderconfiguration,subsonic

flowregionsexistand hence thedownstream cylindrical-afterbodyboundary hasan upstreameffect.

The cylindricalafterbodyhas dualeffectswhich increasesthe flow asymmcn-y; the firstisdue to

the cone-cylinderjunctureand the second isdue to the increaseof the localangle of attackof

the leeward sideof the cylinder.Both of them:effectsincreasethe spadalgrowth of the flow

asymmetry. For the cone-cylinderconfigurationsof 1:1.5and 1:2,the asymmetry isstrongand

the flow becomes unsteady [Ref.3].

Next,we show a comparisonof thecomputed resultswithavailableexperimentaldam. For this

purpose,we considerthecone-cylinderconfigurationof0.5:0.5which was experimenmUy testedby

Landrum 5. The configurationangleof attackis46.1°,the Mach number is 1.6and the Reynolds

number based on the totalconfigurationlength(cone + cylinder)is 6.6x106. The cone semi-

apex angleis9.5°. The problem issolvedusinga gridsizeof 161×81x65. Figure6 shows the

surface-pressurecoefficientalongwiththeexperimentaldata,thetotal-pressure-losscontoursand the

totalMach-numbcr contoursattheaxialstationsof 0.475 and 0.775.The computed and measured

surface-pressurecoefficientareingood agreementon alltheaxialstations.The asymmetry changes

sidesinthedownstream directionasitisshown by theresultsof axialstationsat0.475 and 0.775.

Thiscomparison conclusivelyvalidatesour computed resultsand the gridsize.

4. CONCLUDING REMARKS

Scveralimportantissuesareaddressedin the presentstudy.By increasingthe flow Reynolds

number for flows around a cone,we have shown thatthe flow asymmetry becomes strongand

changes sidesin the downstream direction.For the high-Reynoldsflows,the spatialasymmetric

flowdevelopsin a wavy manner, which isqualitativelysimilarto the temporalasymmetric flow

development of the locally-conicalsolutions,where the flow asymmetry develops in a periodic

manner. By adding a cylindricalafterbodyto theconicalforebody,theflowasymmen-y becomes

strongerin comparison withthatof theisolatedcone. As thelengthof thecylindricalafterbodyis

increased,the flow asymmen'y becomes strongerand unsteady.Finally,thecomputed resultsand

gridused arc conclusivelyvalidamd.
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Prediction of Steady and Unsteady Asymmetric
Vortical Flows Around Circular Cones

Osama A. Kandil* and Tin-Chee Wongt

Old Dominion University, Norfolk, Virginia 23529

and

C. H. Liu_t
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Steady and unsteady, supersonic asymmetric vortical flows and their passive control around circular cones are

considered in this paper, These problems are formulated by using the unsteady, compressible, single and double,
thin-layer, Navier-Stokes equations. The equations are solved by using an implicit, upwind, flux-difference
splitting, finite-volume scheme, either in a pseudotime stepping or in an accurate time stepping. An implicit,
approximately factored, central-difference, finite-volume scheme has also been used to validate some applica-

tions of the upwind scheme. Local conical flows are assumed for the computational applications presented in
this paper. Steady asymmetric vortical flows have been predicted by using random and controlled disturbances.
Unsteady asymmetric vortex-shedding flows have also been predicted, for the first time, using time-accurate
solutions with two different computational schemes. Control of flow asymmetry has been demonstrated
computationally by inserting a vertical fin in the leeward plane of geometric symmetry.

Introduction

N the high angle of attack (AOA) range, the separatedvortical flow from forebodies of missiles and fighter air-
craft may become asymmetric, producing large abrupt
changes in force and moment coefficients. These abrupt
changes may exceed the available controllability and lead to
missile and aircraft spin. Experimental studies of several re-
searchers TM have identified four distinct flow patterns about

slender bodies through a wide AOA range and zero-degree

side slip. The first pattern develops in the very small AOA
range, where the flow is attached and the axial flow is domi-

nant. In the intermediate AOA range, the crossflow becomes

of the same order of magnitude as that of the axial flow, the

flow separates on the leeward side, and a symmetric vortex

pair is formed. As the AOA reaches a high range, the symmet-

ric vortex pair becomes asymmetric, and the flows stay steady.
For this asymmetric vortex-flow pattern to occur, it is not a

necessary condition to have asymmetric separation lines on the
leeward side of the body. The fourth flow pattern develops at

a very high AOA range, where asymmetric time-dependent

vortex shedding occurs either randomly or periodically, simi-
lar to the von Kaxmfi.n vortex street in two-dimensional flows

around cylinders..

For isolated pointed forebodies, the onset of vortical flow
asymmetry occurs when the relative incidence (ratio of AOA
to nose semi-apex angle) exceeds a certain value; e.g., for a

pointed circular cone, the relative incidence must be higher
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than two. However, the relative incidence value is not the only

determinable parameter for the onset of vortical flow asym-

metry. The onset of vortical flow asymmetry is also a function
of the freestream Mach number and Reynolds number and the

shape of the body cross-sectional area as well. Asymmetric

vortical flow and vortex shedding have also been documented
for delta wings 12,t3 at very high relative incidences and low

subsonic regimes.
For the critical values of the relative incidence, Mach num-

ber and Reynolds number, and the shape of cross-sectional

area, the symmetric flow is unstable. Any small flow distur-

bance in the form of a transient side slip, acoustic disturbance,

or similar source of disturbance causes flow instability that

produces, depending on the flow conditions, either a steady

asymmetric vortical flow or an unsteady asymmetric flow with

vortex shedding, in this paper, we present an extensive compu-
tational study of the steady asymmetric vortical flow and
unsteady asymmetric flow with vortex shedding to address
some of the influential parameters as the relative incidence
and Mach number.

As the experimental work shows, the mechanisms that lead

to asymmetric vortex wake are not well understood. However,
two mechanisms have been established for explaining the evo-

lution of flow asymmetry. 5,6s j° The first mechanism applies
to both laminar and fully turbulent flows. It suggests that flow

asymmetry occurs due to instability of the velocity profiles in
the vicinity of the enclosing saddle point that exists in the

crossflow planes above the body primary vortices. 2._,t° The

second mechanism suggests that flow asymmetry occurs due to

asymmetric transition of the boundary-layer flow either at the
nose in the axial direction or on both sides of the body in the

crossflow planes. For pointed slender bodies, the first mecha-

nism produces higher side forces than those produced by the
second mechanism. These results have conclusively been
shown through the experimental work of Lamont s.9 on 2-diam

and 3.5-diam tangent ogive noses with cylindrical afterbody.
An extensive review of the steady and unsteady vortex-induced

asymmetric loads is given by Ericsson and Reding in Ref. I I.

Several attempts have been carried out to computationaliy

simulate asymmetric vortical flows around slender bodies of

revolution. Early computational work on conical flows has

been published in Refs. 14 and 15. Graham and Hankey _6

presented the first three-dimensional Navier-Stokes computa-
tions for asymmetric flow around a cone-cylinder body a_ 30-
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dell angle of attack, 1.6 freestream Mach number, and
0.4 x 106 Reynolds number. The MacCormack explicit finite

difference scheme was used for the computations on a rela-

tively coarse grid of 26 x 30 x 60. A very small perturbation is

induced by the truncation error of finite difference algorithm

that triggers an instability of the saddle point above the body
(first mechanism for asymmetry). Hence, the instability is

induced by numerical bias that is physically amplified to pro-
duce flow asymmetry. By switching the order of spatial differ-

encing in the predictor and corrector sweeps, the asymmetry
was reversed.

Degani and Schiff IT used the thin-layer, Reynolds-averaged,

Navier-Stokes equations to compute asymmetric vortical flow

around an ogive-cylinder body. They found that flow asym-

metry can be obtained by introducing an asymmetric distur-
bance very close to the body nose. The disturbance they used

was in the form of a small jet that was blown from one side of
the body near the nose. However, when the jet was turned off,

the numerical solution unfortunately showed that the flow

recovered its symmetry. The authors of the present paper
believe that the problem is attributed to the smallest scale of

the grid at the solid boundary and the damping effect of the

numerical dissipation in the axial direction, in addition to the

grid-fineness distribution.

Marconi I_ used the Euler equations to solve for supersonic

flow past a circular cone in conjunction with a "forced separa-

tion model," which was used by Dyer, et al. _9The pseudotime
stepping was carried out until the residual error reached ma-

chine zero while the flow was symmetric. Proceeding with the

time stepping, vortex-flow asymmetry was obtained and

stayed stable thereafter. It is believed that the asymmetry was
triggered by the machine round-off error, which acted as a
disturbance to the saddle point in the flowfield. In a later

paper, Siclari and Marconi :° used the full Navier-Stokes equa-

tions to solve for supersonic asymmetric flows around a 5-deg

semiapex angle cone over a wide range of angles of attack.
Very recently, Stahl :l conducted experimental studies of the

low-speed flow around a circular cone of 8-deg semiapex angle

circular cone in the angle of attack range of 15-50 deg at a
Reynolds number of 7800 based on the base diameter, The

onset of flow asymmetry was observed at 35-deg angle of

attack. He has shown that the flow asymmetry can be sup-
pressed by inserting a fin along the leeward plane of geometric

symmetry with its edge along a ray through the apex. The

minimum fin height for this purpose was found to be equal to
the local radius of the cone.

In this paper, the supersonic, steady and unsteady, asym-

metric vortical flows around circular cones are studied using

the unsteady, compressible, single thin-layer, Navier-Stokes
equations. Two computational schemes are used to solve the

equations. The first, which is the main scheme used in this

paper, is an implicit, upwind, flux-difference splitting, finite-
volume scheme. The second, which is used to validate certain

cases of the upwind scheme, is an implicit, approximately
factored, central-difference, finite-volume scheme. Pseudo-

time stepping is used for steady flows and time-accurate step-

ping is used for unsteady flows. Some of the influential
parameters for flow asymmetry, such as the relative incidence

and Mach number, are addressed. A flow case of passive

control of flow asymmetry is also studied using the unsteady,
compressible, double thin-layer, Navier-Stokes equations.

Formulation

The three-dimensional compressible viscous flow around
the body is governed by the conservative form of the dimen-

sionless, unsteady, compressible, double thin-layer, Navier-

Stokes equations, in terms bf time-independent, body-con-

formed coordinates ._, _2 and/_3, the equations are given by

a(2 aL adL)., a(L,)j
at + _' 8/_: 0_ _ = 0, s = 1,2,3, (1)

where

(2 = ] = -) Lo,pu,,pu2,pu3,pel' (2)

L',. E inviscid flux

= (1/J)[0,/_'_, ] '

= (1/J)[pU.,,pulU,. + ai_"p,pu2U., + 82_."p,pu3U,.

+ 83_"p, (pe + p)U.,I', m = 1,2,3 (3)

(_',)2 m viscous and head-conduction flux in _2 direction

= (l/J)lO,dk_Zr, i, d,_Zrm d,_'rk_, ,gk_2 (u.r,.--qk)]' (4)

(_'v)._ -= viscous and head-conduction flux in _3 direction

= (l/J)lO,8,_3r, l, 0,//3r,2, tg*/_3r,_, 8,/_ 3 (u,,rk,,-qa)]' (5)

iS., = at _"uk (6)

The first element of the three momentum elements of Eq. (5)

is given by

M®# t/ .8u,'_

a_*' '_-gT-_a)_ + ,_,_-_) (7)

where

0 = O,_3Ok_3, @ = ,/3a_3°uk (8)
k¢ 0_3

The second and third elements of the momentum elements are

obtained by replacing the subscript 1, everywhere in Eq. (7),

with 2 and 3, respectively. The last element of Eq. (5) is given
by

1 0(o,)17
+ (7 - liP, a_/_JJ (9)

where

w= a.fSu. (1o)

For Eq. (4), in the case of double thin-layer, Navier-Stokes

equations, the elements are given by equations similar to Eqs.

(7-10) with the exception of replacing /_a by /_z. The double

thin-layer, Navier-Stokes equations are used only for the pas-
sive control of flow asymmetry since the existence of the fin
creates a second thin layer that is perpendicular to the cone
thin layer. The reference parameters for the dimensionless

form of the equations are L, a**, L/a**, p**,and t_** for the

length, velocity, time, density, and molecular viscosity, re-

spectively. The Reynolds number is defined as Re = p., V,.L/

_**, and the pressure p is related to the total energy per unit

mass and density by the gas equation

p= (5 - l)p [e- V,(u? + u_+ ul)] (11)

The viscosity is calculated from the Sutherland law

p=T3/2 (I +C'_,
\'T'-_-_c/ C = 0.4317 (12)

and the Prandtl number P, = 0.72.

In Eqs. (1-10), the indicial notation is used for convenience.

Hence, the subscript k and n are summation indices, the

superscript or subscript s is a summation index, and the super-
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script or subscript rn is a free index. The range of k, n, s, and

m is I-3, and 0, ,,. (tg/0+,).
Boundary conditions are explicitly implemented. They in-

clude inflow-outflow conditions and solid-boundary condi-
tions. At the plane of geometric symmetry, periodic condi-
tions are used for symmetric or asymmetric flow applications
on the whole computational domain (right and left domains).
At the far-field inflow boundaries, freestream conditions are

specified since we are dealing with supersonic flows, whereas
at the far-field outflow boundaries, first-order extrapolation
from the interior points is used. On the solid boundary, the
no-slip and no.penetration conditions are enforced; u_ = u2 =
u_ = O, and the normal pressure gradient is set equal to zero.
For the temperature, the adiabatic boundary condition is en-
forced on the solid boundary. The initial conditions corre-

spond to the uniform flow with u_ = u: = u3 = 0 on the solid
boundary.

For the passive control applications using a vertical fin in
the leeward plane of geometric symmetry, solid-boundary
conditions are enforced on both sides of the fin.

Highlights of Computational Schemes

The first computational scheme used to solve the unsteady

compressible, single or double thin-layer, Navier-Stokes equa-

tions is based on the Roe inviscid flux-difference splitting
scheme, in this scheme, the Jacobian matrices of the inviscid

fluxes, As = (_,/aq), s = 1-3, are split into left and right

fluxes according to the signs of the eigenvalues of the inviscid

Jacobian matrices. Flux iimiters are used to dampen the nu-

merical oscillations in regions of large changes of the gradients
of the flowfield vector. The viscous and heat transfer terms

are centrally differenced. The resulting equation is solved by

using approximate factorization in the _', _2, and _:3 direc-

tions. The computational scheme is coded in the computer

program CFL3D.
The second computational scheme is an implicit, approxi-

mately factored, centrally differenced, finite-volume scheme. 22

Added second-order and fourth-order dissipation terms are

used in the difference equation on its right-hand side terms,

which represent the explicit part of the scheme. The Jacobian

matrices of the implicit operator on the left-hand side of the

difference equation are centrally differenced in space, and

implicit second-order dissipation terms are added for the

scheme stability. The left-hand side operator is approximately

factored, and the difference equation is solved in three sweeps

in the _l, _2, and _J directions, respectively. The computa-

tional scheme is coded in the computer program ICF3D. The

ICF3D code is used to verify some of the applications of the

--CFL3D

k ---ICF3D

ller clionl

,'[ --CFL3D

:I .- cF3D
2

0

e

-0.2S(_. *0.14200

Fig. 1 Symmetric flow solulions for a circular cone, a = 10 deg, M_ --. 1.8, Re = 105 (validation case).

:I --CFL3D

=,r,c
I"' '"'+'

Symmetric

--CFL3D

i!f ++o

-" --" CFL3D "-- --I [q- . " ICF3D-- -_

// +, _\\: ,, _, ::

_ Fig. 2 Steady asymmetric flow solutions for s circular cone due to random dislurbances, ct= 20 deg, M,_ = 1.8, R, = 10_ (validation case).
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CFL3D code; namely the cases of Figs. l and 2. For the

problem of passive control of flow asymmetry, the double

thin-layer, Navier-Stokes equations have been solved using the
CFL3D code.

Since the applications in this paper cover local-conical flows

only, the three-dimensional scheme is used to solve for locally

conical flows. This is achieved by forcing the conserved com-
ponents of the flow vector field to be equal at two planes of

x = 0.95 and 1.0. The validity of local-conical-flow assump-
tion is discussed in the next section.

Validity of the Local-Conical-Flow Assumption

The solutions presented in this paper are called local-conical

solutions, which are obtained by equating the conserved com-
ponents of the flowfield vector, in the three-dimensional

scheme, on two crossflow planes that are in close proximity to
each other at a selected location. Once this location is specified

(x = l.O in the present applications), the flow Reynolds num-

ber is determined and the time scale, for time-accurate solu-

tions, is also determined. The resulting solution is a local-con-

ical solution at the specified location. It is not a global-conical

solution. The locally conical equations can be shown by con-

sidering the conservative form of the Navier-Stokes equations

in the Cartesian system

Oq O(E- E_),
+ =0, i= 1-3 (13)

at a x,

By introducing the conical coordinates

X I X_ .)

711= --, )12= -=, _ = xlx, (14)
X3 X3

and using the chain rule to express Eq. (13) in terms of the

conical coordinates, we get

7/3 /Jq # _ _ 0

+ _)(E-E,.)_ + _ (E-_), .00t _,t2

+ _. 7-- (E-E_)3 + 2(i-1,0 = 0 (15)a_3

where

_l = E_- _iE3, E2 = E2 - _2E3

E3 =E_ + _Ei + _2E2

7 = E_ (16)

E,.t = E,q - r/)E_

E,.2 = E,, - "o2Evx

P-,,3= E,_ + rhE,q+ _12E_2

[v _ Ev3 (17)

The conical flow condition requires that the flow variables be

independent of the coordinate r/3. If this condition is imposed

in Eq. (15), by dropping the derivatives with respect to r/t, the
equation reduces to

0 at + (E-E,)) + (E-E,)2 + 2(1-I,) = 0 (18)

It is clearly seen that Eq. (18) still has rt3 dependence in the

unsteady term and the viscous and heat-flux terms (one can see

the explicit dependence of the viscous and heat-flux terms on

r/_ by transforming the elements of these vectors to the conical

coordinates). Hence, Eq. (18) is not self-similar, and there-

fore it does not represent a global-conical flow. However, if r_3

is set equal to a constant c, then one can consider Eq. (18) to

represent a local-conical flow around rt_ = c. The resulting

solution using Eq. (18) with r/3 = c represents a local-conical

solution with a Reynolds number and a time that are scaled by

the constant c. It should be noted that if the flow is steady and

inviscid, then Eq. (18) becomes self-similar, and hence it rep-

resents a global-conical flow. in the present paper, we indi-

rectly solve Eq. (18) at a fixed location of unity. This is
achieved in the three-dimensional flow equation, Eq. (1), by

equating the elements of the flowfield vector at two planes in

close proximity to each other. In this paper, we selected these

planes to be located at x = 0.95 and 1.0. In other numerical

experiments, we use the plane locations at x = 0.995 and 1.0.

The results of these experiments were in excellent agreement

with those of the present paper.

Computational Studies

Supersonic flows about a 5 deg semiapex angle circular cone

at a Reynolds number of 10 _ have been considered. A grid of

161 x 81 points in the circumferential and normal directions is

used throughout the present applications. The grid is gener-

ated by using a modified ]oukowski transformation with a

geometric series for the grid clustering near the solid

boundary. The minimum grid length is 10 -+ at the solid

boundary, and the maximum radius of the computational
domain is 21r, where r is the radius of the circular cone at the

axial station of unity.

SteadySymmetric Flows

Figure I shows steady symmetric vortical-flow solutions for

the circular cone at l0 deg angle of attack and 1.8 freestream
Mach number. In the figure, we show comparisons of the
results of the CFL3D and ICF3D codes. The results include

the residual error versus the number of iterations, the cross-

flow velocity, the total-pressure-loss contours, and the sur-

face-pressure coefficients. It should be noted here that the

angle O in the Co figure is measured from the leeward plane of
geometric symmetry in the clockwise direction. The agreement

of the results of the two code is excellent, and the results are

in full agreement with those of Siclari and Marconi? °

Steady Asymmetric Flow
Round-Off and Truncation Error Disturbances

The cone angle of attack is increased to 20 deg while all the

other flow conditions are kept fixed. Figure 2 shows the results

of the CFL3D and ICF3D codes. In the residual error figure,

the CFL3D code shows that the residual error drops 10 orders

of magnitude within 2500 iteration steps. Thereafter, the error

increases by six orders of magnitude. The flow is symmetric

during this 5000 iteration steps. Next, the error drops down by

another six orders of magnitude and stays constant for 2500
iteration steps. The flow becomes asymmetric and stable. The

ICF3D code shows that the residual error drops five orders of

magnitude in the first 3000 iteration steps, increases two or-

ders of magnitude in the next 2000 iteration steps, and then

drops down by three orders of magnitude within the next 5000

iterations. The flow solution goes through a symmetric un-

stable solution and then to an asymmetric stable solution. The

pressure-coefficient figure for the two codes is the same over

the full range of the circumferential angle 0. The suction

pressure in the range of 0 = 0-90 deg is lower than that of the
range of 0 = 270-360 deg. The crossflow velocity and total-

pressure-loss contours for the two codes are also in excellent

agreement. They show the nature of the flow asymmetry and

its details. The results are in complete agreement with those of
Ref. 20.

Since the residual error of the CFL3D code is much smaller

than that of the ICF3D code after the first 2500 iterations, the

disturbance that triggered the asymmetry in the first code is

attributed to the machine round-off error, while the distur-
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bance that triggered the asymmetry in the second code is

attributed to the truncation error of the scheme (since there is

a bias due to the spatial marching direction). Both distur-

bances are random in nature. However, irrespective of the
source of disturbance, the final asymmetric stable solution is

the same.

Controlled Transient Side-Slip Disturbances

In Figs. 3 and 4, we show steady asymmetric flow solutions

due to transient side-slip disturbances of ± 2 and ± 0.5 deg.

The residual-error figures show a drop of seven orders of

magnitude in the first 2000 iterations. At this step, a side-slip

disturbance is imposed for six iteration steps, then it is re-
moved. Irrespective of the magnitude or the sign of the side-

slip disturbance, the residual error increases by six orders of

magnitude, then it drops down very rapidly. A stable asym-

metric flow solution is obtained. The asymmetric solutions

corresponding to the ± 2 deg side-slip disturbances are mirror

images of each other, as can be seen from the figures of the

surface-pressure coefficient, crossflow velocity, and total-

pressure-loss contours. The corresponding asymmetric solu-

tions with the ± 0.5 deg side-slip disturbances are exactly the
same as those of the ± 2 deg side-slip disturbances. Moreover,

the final asymmetric solutions of the :t: 2 deg and ± 0.5 deg
side-slip disturbances are the same as those of Fig. 2.

Again, this numerical experiment shows that the same phys-
ical flow asymmetry is obtained.

Unsteady Asymmetric Vortex Shedding

In the present case, the angle of attack is increased to 30 deg
and all the other flow conditions are kept the same as those of
the cases above. Figure 5 shows the results of this case.

Here, we show the history of the residual error and the lift

coefficient up to the 15,700 time step. First, pseudo-time
stepping was used up to 10,000 iterations, and the solution was
monitored every 500 iterations. The solution showed that the

asymmetry was changing from the left side to the right side,

which indicated a possibility of unsteady asymmetric vortex

shedding. The residual error was also oscillating. The compu-

tations were repeated starting from the 3,500 iteration step

using time-accurate calculations with ,at = 10- 3. The residual-

error and lift-coefficient figures show the time history of the
solution, it is seen that the residual error and the lift coeffi-

cient show a transient response that is followed by a periodic
response. Figure 5 shows also snapshots of the time history of

the solution for the total-pressure-loss contours and surface-
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pressure coefficient. The solutions are shown every 100 time

steps starting from the time step of 15,000. At n = 15,000, the
asymmetric flow is seen with an already shed vortex from the

right side. As time passes, the shed vortex is convected in the

flow and the primary vortex on the left side stretches upwards

while the primary vortex on the right gets stronger, as it is seen

from the surface pressure figures. At n = 15,600, the primary
vortex on the left side is about to be shed. At n = 15,700, the

primary vortex on the left side is shed in the flowfield. It

should be noticed that the solution at n = 15,700 is exactly a

mirror image to that at n = 15,000. The solution from 15,000-

15,700 represents the first one-half the cycle of shedding. The

solution from 15,700-16,400 (not shown) represents the sec-
ond one-half the cycle. The periodicity of the shedding motion

is conclusively captured. The period of oscillations is 10- _ ×

1,400 steps = 1.4 that produces a shedding frequency of 4.400

(Strouhal number). This solution is obtained by using the

flux-difference splitting (FDS) scheme.

Very recently, a researcher in the computational simulation

area of asymmetric flows claimed that he had applied the
flux-vector splitting (FVS) scheme of the CFL3D code to the

present flow case. His solution showed that the flow was

steady and symmetric. A statement of his results was commu-
nicated to us and we were asked to respond. Therefore, we

recomputed the present flow case using the FVS scheme of the
same CFL3D code. in Fig. 6, we show the results of the

time-accurate solutions using the FVS scheme using the same

grid. Using the FVS scheme, the flux limiters were turned on,

and as can be seen from the logarithmic-residual curve, the

solution becomes symmetric and steady after 5000 time steps.

Next, the flux iimiters are turned off, and the solution shows

a transient response up to 12,000 time steps. Thereafter, the

solution becomes periodic with periodic asymmetric vortex

shedding. The solution was monitored every IO0 time steps,

and the results from n = 13,900-14,600 are shown. Although

the process of adjusting the time instants is difficult to match
those of the FDS solution, it is seen that the captured snap-
shots of the FVS solution almost match those of the FDS

solution. Comparing the FVS solutions at n = 13,900 and

14,600, it is seen that they are mirror images of each other.

Hence, periodic flow response has been achieved with a period
of 1400 x 10-3= 1.4, which is exactly the same period of

shedding as that of the FDS solution. This pinpoints the high
numerical dissipation effect of the FVS scheme when the flux
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limiters are turned on. The resulting numerical dissipation in
the FVS is large enough to dampen the random disturbances

of the flow solution. By turning off the flux limiters in the

FVS scheme, the random disturbances can grow, producing
the asymmetric unsteady vortex shedding. This also shows

that the FDS scheme, even with the flux limiters turned on, is

less dissipative than the FVS scheme. These results conclu-
sively explain the erroneous claim of steady flow made by the

previously mentioned researcher.

Steady Asymmetric Flow at Different Mach Numbers (Effect of M_)

Figure 7 shows the effect of the freestream Math number

(M® = 2.2, 2.6, and 3.0) on the convergence history, surface

pressure, crossflow velocity, and total-pressure-loss contours
for the circular cone at 20 deg angle of attack. At M® = 2.2,

the residual error shows that the stable asymmetric flow is
obtained within the same number of iterations as that of the

M® = 1.8 case. At M® = 2.6, the residual error shows that the

stable asymmetric flow is obtained after a large number of

iterations. And at M= = 3.0, no asymmetric flow was cap-

tured, the flow stayed symmetrically stable. The surface pres-

sure figures show that the asymmetry gets weaker as the Mach

number is increased. This conclusion is dearly seen from the

crossflow velocity and the total-pressure-loss figures. It should
be noted that since the nature of disturbance is random, flo_ +

asymmetry changes sides as the Mach number increases until it

disappears.

Passive Control of Flow Asymmetry

Figure 8 shows the passive control of flow asymmetry by

inserting a vertical fin in the leeward plane of geometric sym-
metry. The fin height is equal to the cone local radius r. Here,
the double thin-layer, Navier-Stokes equations are used to

obtain these results. The flow Mach number is kept at 1.8 and

the angle of attack is 20 deg. The flow is completely symmetric

as can be seen from the figures of the surface-pressure coeffi-

cient, total-pressure-loss contours, and crossflow velocity. A

blow-up of the cross-flow velocity at the fin-cone juncture

shows two corner recirculating bubbles of exactly the same

size. This case has been obtained after 24,000 iteration steps.

Again, this is the first time such a computational simulation of
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the passive control of the flow asymmetry has been presented.

The results are in full agreement with Stahl's experimental

study. 2_

Concluding Remarks

This paper presents extensive computational study and sim-

ulation of steady and unsteady asymmetric vortex flow around

circular cones. A systematic study has been carried out to

show the effects of angle of attack and Much number. The

study shows that the flow asymmetry is independent of the

type or level of the disturbance. For the controlled transient

side-slip disturbance, the solution is unique. For the uncon-

trolled random disturbance, the solution is also unique with

the exception of having the same asymmetry changing sides on

the cone. It conclusively shows that periodic vortex shedding

has been captured at larger angles of attack. The unsteady

asymmetric vortex-shedding solution has been substantiated

by using two different computational schemes. It also shows

that as the Much number increases, the vortex flow asymmetry

gets weaker until it disappears. The possibility of passive

control of flow asymmetry has also been demonstrated. Many

of the cases presented here are obtained for the first time, in

particular, the asymmetric vortex shedding cases and the cases

of passive control of flow asymmetry.
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